Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cancer Rep (Hoboken) ; 6(5): e1803, 2023 05.
Article in English | MEDLINE | ID: covidwho-2282425

ABSTRACT

BACKGROUND: Multiple myeloma (MM) patients have variable responses to mRNA vaccination to COVID-19. Little is known regarding their vaccine-induced antibody levels over time. METHODS: We monitored spike IgG antibody levels over 24 weeks among a subset of 18 MM patients who showed a full response after two mRNA vaccinations. RESULTS: MM patients had a more rapid decline in antibody levels as compared to eight healthy controls, with power law half-lives of 72 days (vs. 107 days) and exponential half-lives of 37 days (vs. 51 days). The patients with longer SARS-CoV-2 antibody half-lives were more likely to have undetectable monoclonal protein than those with shorter half-lives, suggesting better disease control may correlate with longer duration of vaccine-induced antibodies. Regardless, by 16 weeks post-second dose of mRNA vaccination, the majority of patients had antibody levels below 250 binding arbitrary units per milliliter, which would be unlikely to contribute to preventing COVID-19. CONCLUSIONS: Thus, even MM patients who respond adequately to vaccination are likely to require more frequent booster doses than the general population.


Subject(s)
COVID-19 , Multiple Myeloma , Humans , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , RNA, Messenger
2.
Clin Infect Pract ; 17: 100214, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2158604

ABSTRACT

We have reported that IgG antibody responses following two mRNA COVID-19 vaccinations are impaired among patients with multiple myeloma (MM). In the current study, sixty-seven patients with MM were tested for anti-spike IgG antibodies 0-60 days prior to their first vaccination, 14-28 days following the second dose, and both before and 14-28 days after their third dose of the mRNA-1273 or BNT162b2 vaccines. After the first two doses, most patients' (93 %) antibody levels declined to ineffective levels (<250 BAU/mL) prior to their third dose (D3). D3 elicited responses in 84 % of patients (61 % full response and 22 % partial response). The third vaccination increased antibody levels (average = 370.4 BAU/mL; range, 1.0-8977.3 BAU/mL) relative to just prior to D3 (average = 25.0 BAU/mL; range, 1.0-683.8 BAU/mL) and achieved higher levels than peak levels after the first two doses (average = 144.8 BAU/mL; range, 1.0-4,284.1 BAU/mL). D3 response positively correlated with mRNA-1273, a > 10-fold change from baseline for the two-dose series, switching from BNT162b2 to mRNA-1273 for D3, and treatment with elotuzumab and an immunomodulatory agent. Lower antibody levels prior to D3, poorer overall response to first two doses, and ruxolitinib or anti-CD38 monoclonal antibody treatment negatively correlated with D3 response. Our results show encouraging activity of the third vaccine, even among patients who failed to respond to the first two vaccinations. The finding of specific factors that predict COVID-19 antibody levels will help advise patients and healthcare professionals on the likelihood of responses to further vaccinations.

3.
Clin Infect Pract ; 13: 100130, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1712518

ABSTRACT

BACKGROUND: Patients with multiple myeloma have unpredictable responses to vaccination for COVID-19. Anti-spike antibody levels can determine which patients develop antibodies at levels similar to healthy controls, and are a known correlate of protection. CASE REPORT: A multiple myeloma patient developed protective anti-spike antibodies after vaccination (608 IU/mL), but nonetheless developed severe breakthrough COVID-19 just 10 weeks following his second vaccination with mRNA-1273. RESULTS: Sequencing of the viral isolate revealed an extensively mutated variant with 10 spike protein mutations, including E484Q and N440K. Serology testing showed a dramatic decline in anti-spike antibodies immediately prior to virus exposure. CONCLUSIONS: Multiple myeloma patients who do develop detectable antibody responses to vaccination may be at increased risk for breakthrough infections due to rapid decline in antibody levels. Viral variants with immune escape mutations such as N440K, also seen independently in the SARS-CoV-2 Omicron variant (B.1.1.529) and in viral passaging experiments, likely require a higher level of anti-spike antibodies to prevent severe COVID-19.

4.
Clinical infection in practice ; 2021.
Article in English | EuropePMC | ID: covidwho-1564860

ABSTRACT

Background Patients with multiple myeloma have unpredictable responses to vaccination for COVID-19. Anti-spike antibody levels can determine which patients develop antibodies at levels similar to healthy controls, and are a known correlate of protection. Case report A multiple myeloma patient developed protective anti-spike antibodies after vaccination (608 IU/mL), but nonetheless developed severe breakthrough COVID-19 just 10 weeks following his second vaccination with mRNA-1273. Results Sequencing of the viral isolate revealed an extensively mutated variant with 10 spike protein mutations, including E484Q and N440K. Serology testing showed a dramatic decline in anti-spike antibodies immediately prior to virus exposure. Conclusions Multiple myeloma patients who do develop detectable antibody responses to vaccination may be at increased risk for breakthrough infections due to rapid decline in antibody levels. Viral variants with immune escape mutations such as N440K, also seen independently in the SARS-CoV-2 Omicron variant (B.1.1.529) and in viral passaging experiments, likely require a higher level of anti-spike antibodies to prevent severe COVID-19.

5.
J Clin Microbiol ; 59(12): e0144621, 2021 11 18.
Article in English | MEDLINE | ID: covidwho-1522905

ABSTRACT

To provide an accessible and inexpensive method to surveil for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations, we developed a multiplex real-time reverse transcription-PCR (rRT-PCR) assay, the Spike single-nucleotide polymorphism (SNP) assay, to detect specific mutations in the spike receptor binding domain. A single primer pair was designed to amplify a 348-bp region of spike, and probes were initially designed to detect K417, E484K, and N501Y. The assay was evaluated using characterized variant sample pools and residual nasopharyngeal samples. Variant calls were confirmed by SARS-CoV-2 genome sequencing in a subset of samples. Subsequently, a fourth probe was designed to detect L452R. The lower limit of 95% detection was 2.46 to 2.48 log10 genome equivalents (GE)/ml for the three initial targets (∼1 to 2 GE/reaction). Among 253 residual nasopharyngeal swabs with detectable SARS-CoV-2 RNA, the Spike SNP assay was positive in 238 (94.1%) samples. All 220 samples with threshold cycle (CT) values of <30 for the SARS-CoV-2 N2 target were detected, whereas 18/33 samples with N2 CT values of ≥30 were detected. Spike SNP results were confirmed by sequencing in 50/50 samples (100%). Addition of the 452R probe did not affect performance for the original targets. The Spike SNP assay accurately identifies SARS-CoV-2 mutations in the receptor binding domain, and it can be quickly modified to detect new mutations that emerge.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcription
6.
Leukemia ; 35(12): 3534-3541, 2021 12.
Article in English | MEDLINE | ID: covidwho-1333898

ABSTRACT

Multiple myeloma (MM) patients are at higher risk for severe COVID-19. Their mRNA vaccination response against SARS-CoV-2 is unknown. Thus, we analyzed responses to mRNA vaccination against COVID-19 among these patients. Using an ELISA-based assay that detects IgG antibodies to SARS-CoV-2 spike protein, we determined serum antibody levels prior to immunization and 12-21 and 14-21 days following the first and second vaccinations, respectively, with mRNA-1273 (Moderna) or BNT162b2 (Pfizer/BioNTech) among 103 MM patients (96 and 7 with active and smoldering disease, respectively). We stratified patients into clinically relevant responders (>250 IU/mL), partial responders (50-250 IU/mL, which was above pre-COVID-19 background), and nonresponders (<50 IU/mL). Smoldering MM patients responded better than those with active disease. Only 45% of active MM patients developed an adequate response, while 22% had a partial response. Lower spike antibody levels were associated with older age, impaired renal function, low lymphocyte counts, reduced uninvolved immunoglobulin levels, > second line of treatment, and among those not in complete remission. Patients who received mRNA-1273 vaccine had higher anti-spike antibody levels than those who were vaccinated with BNT162b2. Thus, most MM patients have impaired responses to mRNA vaccination against COVID-19, and specific clinical and myeloma-related characteristics predict vaccine responsiveness.


Subject(s)
2019-nCoV Vaccine mRNA-1273/administration & dosage , Antibodies, Viral/blood , BNT162 Vaccine/administration & dosage , COVID-19/therapy , Multiple Myeloma/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/epidemiology , COVID-19/virology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Multiple Myeloma/complications , Multiple Myeloma/virology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL